In thinking about a program that evaluates Scheme expressions, an analogy might be helpful. One operational view of the meaning of a program is that a program is a description of an abstract machine. For example, consider again this procedure to compute factorials:

 
(define (factorial n)
  (if (= n 0) 1 (* n (factorial (- n 1)))))

We could express an equivalent program in Python as well, using a conditional expression.

>>> def factorial(n):
            return 1 if n == 1 else n * factorial(n - 1)
    

We may regard this program as the description of a machine containing parts that decrement, multiply, and test for equality, together with a two-position switch and another factorial machine. (The factorial machine is infinite because it contains another factorial machine within it.) The figure below is a flow diagram for the factorial machine, showing how the parts are wired together.

In a similar way, we can regard the Scheme interpreter as a very special machine that takes as input a description of a machine. Given this input, the interpreter configures itself to emulate the machine described. For example, if we feed our evaluator the definition of factorial the evaluator will be able to compute factorials.

From this perspective, our Scheme interpreter is seen to be a universal machine. It mimics other machines when these are described as Scheme programs. It acts as a bridge between the data objects that are manipulated by our programming language and the programming language itself. Image that a user types a Scheme expression into our running Scheme interpreter. From the perspective of the user, an input expression such as (+ 2 2) is an expression in the programming language, which the interpreter should evaluate. From the perspective of the Scheme interpreter, however, the expression is simply a sentence of words that is to be manipulated according to a well-defined set of rules.

That the user's programs are the interpreter's data need not be a source of confusion. In fact, it is sometimes convenient to ignore this distinction, and to give the user the ability to explicitly evaluate a data object as an expression. In Scheme, we use this facility whenever employing the run procedure. Similar functions exist in Python: the eval function will evaluate a Python expression and the exec function will execute a Python statement. Thus,

>>> eval('2+2')
    4
    

and

>>> 2+2
    4
    

both return the same result. Evaluating expressions that are constructed as a part of execution is a common and powerful feature in dynamic programming languages. In few languages is this practice as common as in Scheme, but the ability to construct and evaluate expressions during the course of execution of a program can prove to be a valuable tool for any programmer.